Contrasting static-to-kinetic friction transitions on layers of an autophobically dewetted polymer film using Fourier-analyzed shear modulation force microscopy

نویسنده

  • G. Haugstad
چکیده

Fourier analysis of oscillating forces at a laterally modulated tip provides new insight into static-to-kinetic friction transitions on ultrathin polyvinyl alcohol (PVA) films. In addition to contrast in sliding friction, layers of autophobically dewetted PVA films exhibit remarkable contrast in the transition from static to kinetic friction as derived from spatially resolved Fourier analysis. These differences relate to strong adsorption of first layer to mica substrate and concomitant conformational arrest, as compared to bulklike behavior in the second layer. The third Fourier harmonic is found to be a sensitive gauge to variable degrees of sliding as a function of both lateral drive amplitude (0.25–25 nm) and normal load (tensile to compressive). For a 2.5-nm drive on PVA, it is discovered that a largely static contact at compressive loads becomes a largely sliding contact at tensile loads. This finding has implications for the analysis of shear modulation force microscopy of polymers in the context of contact mechanics models, and for studies under variable sample compliance as a function of temperature or plasticizer absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition from static to kinetic friction in a model lubricated system

Molecularly thin confined fluids were deformed in shear faster than structural relaxations in response to shear could be accomplished, such that with increasing deformation the systems passed from the rest state to sliding. The response of these systems—two atomically smooth mica sheets separated by a fluid comprised of globularly shaped molecules @octamethylcyclotetrasiloxane#—was studied as a...

متن کامل

Wettability of End-Grafted Polymer Brush by Chemically Identical Polymer Films

Previous experiments on chemically homogeneous polymer melt-brush systems have found large deviations from theory. By using X-ray reflectivity and atomic force microscopy, we find that the equilibrium structure of these systems is complex, composed of dewetted droplets of the constituent polymers residing on a residual film of the end-grafted brush swollen by the free melt chains. When the mole...

متن کامل

Shear modulation force microscopy study of near surface glass transition temperatures

We report results of glass transition (T(g)) measurements for polymer thin films using atomic force microscopy (AFM). The AFM mode, shear modulation force microscopy (SMFM), involves measuring the temperature-dependent shear force on a tip modulated parallel to the sample surface. Using this method we have measured the surface T(g) of thin (17-500 nm) polymer films and found that T(g) is indepe...

متن کامل

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

In this paper we correlate the Atomic Force Microscope probe movement with surface location while scanning in the imaging and Force versus distance modes. Static and dynamic stick-slip processes are described on a scale of nanometres to microns on a range of samples. We demonstrate the limits and range of the tip apex being fixed laterally in the force versus distance mode and static friction s...

متن کامل

Probing Polymer Viscoelastic Relaxations with Temperature-Controlled Friction Force Microscopy

A quantitative method, using temperature-controlled friction force microscopy (FFM), has been developed to determine the frictional (dissipative) character of thin polymer films. With this method variations in friction are sampled over micrometer-scale regions and are reduced to “friction histograms,” yielding the distribution of frictional forces on the surface. The temperature dependence of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005